

Name:		 	
Mathe	Class		

Year 12 **Mathematics Extension 2**

HSC Course Trial Examination

August, 2022

Time allowed: 3 hours + 10 minutes reading time

General Instructions:

- Marks for each question are indicated on the question.
- NESA approved calculators may be used
- In Questions 11-16, show all relevant mathematical reasoning and/or calculations
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black pen
- All answers are to be in the writing booklet provided
- A reference sheet is provided.

Total marks – 70

Section I - 10 Marks

- Attempt Question 1-10 on the sheet provided
- Allow about 15 minutes for this section

Section II – 90 Marks

- Attempt Questions 11-14
- Allow about 2 hours and 45 minutes for this section

Section I

10 Marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

1. Consider the statement:

$$\forall x : |2x + 5| \le 9 \Rightarrow |x| \le 4$$

Which of the following is a counterexample to this statement?

- (A) x = 0
- (B) x = -6
- (C) x = -10
- (D) x = 10

2. What is the magnitude of the vector $(\cos \theta)_{i}^{i} + (\sin \theta)_{j}^{j} + (\tan \theta)_{k}^{k}$?

- (A) 1
- (B) $\csc \theta$
- (C) $\cot \theta$
- (D) $\sec \theta$

3. Where $\lambda \in \mathbb{R}$, which of the following is a vector equation of the line through (5,3), parallel to 2i + 4j?

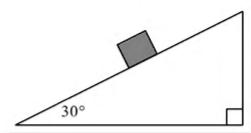
(A)
$$2i + 4j + \lambda(5i + 3j)$$

(B)
$$2i + 4j + \lambda(3i - 5j)$$

(C)
$$5i + 3j + \lambda(i + 2j)$$

(D)
$$5i + 3j + \lambda(2i - j)$$

- **4.** Given $z = 3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$, which of the following is $(\bar{z})^{-1}$ in polar form?
 - $(A) \frac{1}{3} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$
 - (B) $-\frac{1}{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
 - $(C)\frac{1}{3}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$
 - (D) $-\frac{1}{3} \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right)$
- **5.** Which of the following is equivalent to i^i ?
 - (A) $e^{-\frac{\pi}{2}}$
 - (B) $e^{\frac{\pi}{2}}$
 - (C) i
 - (D) -i
- **6.** State the values of A, B, and C if


$$\frac{4x+10}{(2-x)(x^2+2)} = \frac{A}{2-x} + \frac{Bx+C}{x^2+2}$$

- (A) A = 3, B = -1, C = 5,
- (B) A = 3, B = 3, C = 2
- (C) A = 5, B = -1, C = 0
- (D)A = 5, B = -6, C = 5
- 7. Consider the statement: "If I have power, then I have responsibility."

Which of the following is NOT an equivalent statement?

- (A) If I do not have responsibility, then I do not have power.
- (B) If I have responsibility, then I have power.
- (C) Either I do not have power, or I have responsibility.
- (D) I cannot have both power and no responsibility.

- 8. The velocity of a particle varies with respect to its displacement, such that $v = 9 6x x^2$, what is the acceleration when x = 0?
 - (A) 6
 - (B) -6
 - (C) 54
 - (D) -54
- **9.** An object is placed on a smooth ramp inclined at an angle of 30° to the horizontal.

If the acceleration due to gravity is 10 ms^{-2} , at what velocity is the object travelling down the ramp after t seconds?

- (A) $5t \ ms^{-1}$
- (B) $5 ms^{-1}$
- (C) $5\sqrt{3}t \ ms^{-1}$
- (D) $5\sqrt{3} \ ms^{-1}$
- 10. Which of the following integrals is greater than zero?

(A)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{x^2} \cos x \, dx$$

$$\int_{-\pi}^{\pi} x^3 \cos x \, dx$$

(C)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\sin^2 x - \cos^2 x) dx \qquad \int_{-1}^{1} \sin^{-1}(x^3) dx$$

Section II

Total marks - 90

Attempt Question 11-16

Allow about 2 hour and 45 minutes for this section

Begin each question on a NEW page

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a NEW page.

a) If z = 5 + i and w = 4 - 2i, simplify in x + iy form

i)
$$z + iw$$

ii)
$$z\overline{w}$$

iii)
$$\frac{w}{z}$$

b) For the complex number z = -3 - 3i

i) Express z in the form
$$r(\cos \theta + i \sin \theta)$$
.

ii) Hence or otherwise, find the smallest positive integer
$$n$$
, such that $z^n \in \mathbb{R}$.

c) Prove that
$$x^2 + x + 1$$
 is odd for all positive integer values of x.

d) If
$$a = i + 2j + 3k$$
 and $b = 4i + 5j + 6k$, evaluate $(a - 2b) \cdot a$.

e) Find the vector
$$v_{\tilde{u}}$$
 parallel to $u_{\tilde{u}} = 3i_{\tilde{u}} - 2j_{\tilde{u}} + 4k_{\tilde{u}}$ that has a magnitude of 3.

$$\int \frac{2x+3}{x+1} \, dx$$

Question 12 (15 marks) Begin a NEW page.

- a) Where z = x + iy, sketch the graph defined by $Im(z^2) = 4$.
- b) Find the following integrals

i)
$$\int \frac{1}{\sqrt{5+4x-x^2}} dx$$

$$\int \sin^4 x \cos^3 x \ dx$$

c) Evaluate 2

$$\int\limits_{1}^{\sqrt{5}} x^3 \sqrt{x^2 - 1} \, dx$$

- d) A particle is moving in a straight line in simple harmonic motion. The amplitude of the motion is 4 cm, and the period of the motion is 8 seconds. The particle begins at the maximum displacement from the centre of motion.
 - i) Find when the particle is first 2 cm to the right of the centre of motion.
 - ii) Calculate the maximum velocity of the particle.
 - iii) Find the maximum acceleration, and the first time at which this occurs.

Question 13 (15 marks) Begin a NEW page.

- a) It is known that $P(x) = 2x^3 19x^2 + 112x + d$, where $d \in \mathbb{R}$, has a zero of 5 + 6i.
 - i) What are the two other zeroes of P(x)?
 - ii) Find the value of d.
- b) If ω is a non-real cube root of unity, prove that:

i)
$$1 + \omega + \omega^2 = 0$$

ii)
$$(1 + \omega^2)(1 + \omega - \omega^2)^7 = 128$$

c) For integers a, b, c, with $b, c \le 9$, the number x can be written as 100a + 10b + c. For example, the number 56789 can be written as $100 \times 567 + 10 \times 8 + 9$.

Use this to prove that x is divisible by 4 if and only if the last two digits are divisible by 4.

d) Let
$$a = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ -4 \\ 4 \end{bmatrix}$. If θ is the acute angle between these vectors, find the exact value of $\sin 2\theta$.

2

e) Find the point of intersection of the vector lines

$$r = \begin{bmatrix} 0 \\ 3 \\ -5 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \text{ and } q = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

Question 14 (15 marks) Begin a NEW page.

- a) A particle moves with equation of motion $x = \sin 3t + \cos 3t + 2$ metres. 2 Prove that the particle is moving in simple harmonic motion and find the centre and period of its motion.
- b) For integers a and b, with $b \neq 0$, consider the statement:

"If x is irrational, then a + bx is irrational."

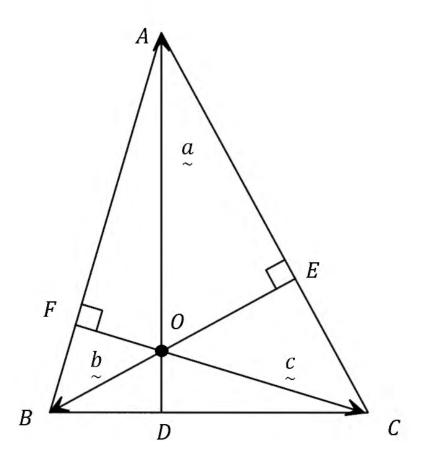
- i) State the contrapositive of this statement.
- ii) Hence, or otherwise, show that the statement is true.
- iii) Show that $\sqrt{3}$ is irrational, and hence deduce that $5 + 7\sqrt{3}$ is irrational.
- c) Determine whether the origin (0,0,0) lies inside, outside, or on the sphere given by the equation $x^2 2x + y^2 + z^2 + 4z + 4 = 0$.
- d) The line L_1 is given by $r = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix}$ and the line L_2 passes the points (3, 8, -2) and (a, -2, 10). Find the value of a if L_1 is parallel to L_2 .
- e) Where a is a positive constant
 - i) Show that

$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$

ii) Hence, or otherwise, evaluate 2

$$\int\limits_{0}^{1}x(1-x)^{50}\,dx$$

Question 15 (15 marks) Begin a NEW page.

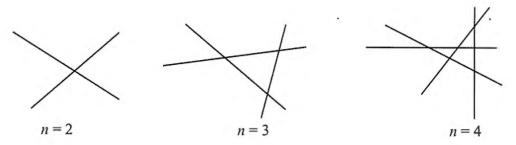

- a) The acceleration of a particle is given by $\ddot{x} = -\frac{1}{2}e^{-4x}$. Initially, the particle is at the origin with a velocity of $\dot{x} = \frac{1}{2}ms^{-1}$.
 - i) Express velocity as a function of displacement.
 - ii) Find the displacement as a function of time.
 - iii) Describe the limiting behaviour of displacement and velocity (as $t \to \infty$).
- b) For the integral

$$I_n = \int_{0}^{\frac{\pi}{2}} x^n \cos x \ dx$$

- i) Show that $I_n = \left(\frac{\pi}{2}\right)^n n(n-1)I_{n-2}$ 3
- ii) Hence, find the value of I_4 in terms of π .

Question 15 continues on Page 10

c) In the diagram below, $\underline{a} = \overrightarrow{OA}$, $\underline{b} = \overrightarrow{OB}$, and $\underline{c} = \overrightarrow{OC}$. $\triangle ABC$ is an acute angled triangle. O is the point of intersection of altitudes CF and BE (i.e. $BE \perp AC$ and $CF \perp AB$). \overrightarrow{AO} is produced from O to point D on BC.


i) Show that
$$b \cdot (c - a) = 0$$
 and $c \cdot (b - a) = 0$.

- ii) Hence, show that $AD \perp BC$.
- iii) What geometrical property of the triangle has been proven?

Question 16 (15 marks) Begin a NEW page.

a)

- i) Show that $(1 + i \tan \theta)^n + (1 i \tan \theta)^n = \frac{2 \cos n\theta}{\cos^n \theta}$ Where $\cos \theta \neq 0$ and n is a positive integer.
- ii) Hence show that if z is a purely imaginary number, then the roots of $(1+z)^4 + (1-z)^4 = 0$ are $z = \pm i \tan \frac{\pi}{8}$, $\pm i \tan \frac{3\pi}{8}$.
- b) Consider n lines drawn on a plane, as shown in the series of diagrams below. Let X_n be the maximum number of possible points of intersection of these lines.

i) Find the values of a, b, and c in the table below

n	2	3	4	5	6
X_n	1	3	а	b	С

1

3

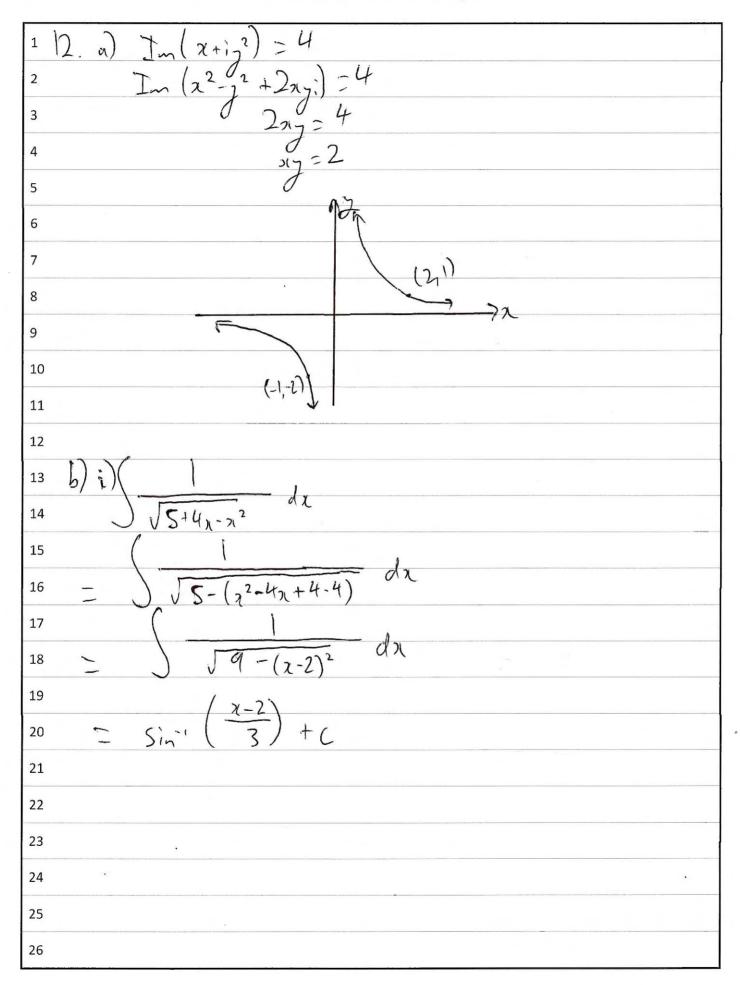
ii) Prove by mathematical induction that for $n \ge 2$, X_n is given by

$$X_n = \frac{n(n-1)}{2}$$

c) Prove the following, where x, a, b, c are real positive numbers.

i)
$$x + \frac{1}{x} \ge 2$$

ii) Hence, show
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$$


iii) Hence, show
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

End of Examination

	rial
11. (B) 12x-6+51=7 V	
2 -6 >4 ×	
3	
42 (D.) Jeon 20+5120+tan20 = J1+tan20	
5 = ye 0	
6	
7 3. (C.) as i+2j is parallel to 2:+	4
8 9 4 (A.) 1	
2/ 7 70	5)
$\frac{10}{11} \qquad \frac{3(\cos^2 6 + \sin^2 6)}{11} = \frac{1}{3} (\cos^2 6 + \sin^2 6)$	6)-
$\frac{125.(A.)}{13}$ $i' = (e^{\frac{\pi}{2}i})' = e^{\frac{\pi}{2}}$	
	2
110 1-2	•
$18 = A \cdot 6$ $10 = 3 \times 10^{-3}$	Z + (>Z
$A=3 \qquad (-2)$	
$\begin{array}{c c} 18 \\ 10 \\ \hline \end{array}$	
197. (B.) Convene is not equivalent.	
$\begin{array}{c c} 20 & & & \\ \hline & Q & (A) & & & \\ \end{array}$	2)
$a = V \times J_{\lambda} = (-6 - 2x)(9 - 6x - 6x - 2x)$	a*/
$\frac{22}{1.4t}$ $\frac{1}{1.00}$ $\frac{1}{0.00}$ $\frac{1}{0.00}$ $\frac{1}{0.00}$	
23	
24 9. (A) a=10 cos60°	
25 10 = 5	
26 :- v= 5t.	

1	[1.
2	a) $z = Sti$, $w = 4-2$;
3	
4	i) 2+iw= 5+i+i(4-2i)
5	= 5+; +4; +2
6	='7+Si
7	
8	ii) $z = (S+i)(4+2i)$
9	= 20+10:+4:-2
10	= 18 + 14i
11	4-2: 5-1
12	$\frac{\omega}{z} = \frac{4-2i}{5+i} \times \frac{5-i}{5-i}$
13	20-10:-4:-2
14	= 25+1
15	18 14 9 7;
16	$= \frac{18}{26} - \frac{14}{26}i = \frac{9}{13}i = \frac{7}{13}i$
17	
18	b) z=-3-3;
19	
20	i) == 352 (ws(-317)+isin(-317))
21	_3
22	-3 =
23	1/18
24	7
25	ii) arg(z-) = -5-17 it.
26	As sin(km) = 0, keZ, n=4.

```
c) x2+2+1
    = 2(2+1)+1
3 If a is odd, atl is
                         x(x+1) +1 3 add.
 even, so
    x(x+1) +1 is odd
 d) (a-2b) · a
   = (i+2j+3k-2(4;+Sj+6k))·(i+2j+3k)
      -71-8; +9k).(1+2; +3h)
    =-7-16-27
15
     | w = J29
     ·· V= 3/2a (3i-2j+4k)
21
22
23
                 = 2x + 12 /24/1 +c
25
26
```


Sintx cos3x dx	
	u= Sinz
= Sin4x cos3x cos2 dx	du=cosndr
$=$ $\int 4^{4}(1-x^{2}) dx$	
· · · · · · · · · · · · · · · · · · ·	;
= \(\sum_{n}^{4} - \subseteq \dn	
_ \ 5 \ \ ~	
= \frac{1}{5}u^5 - \frac{1}{7}u^7 + C	
= = = sin3x - = sin7x +C.	
(z) $\int_{1}^{\sqrt{5}} x^{3} \sqrt{x^{2}-1} dx$	u= 2 ² -1 2 ² = u+1
-	$x = 1 \rightarrow u = 0$
$=\frac{1}{2}\sqrt{52xx^2}, \sqrt{x^2-1} dx$	2=JS -> 4>4
	dn = 2z da
$=\frac{1}{2}\left(\frac{4}{(u+1)}\int u\ du\right)$	
- 2 J (4+1) Vu du	
= 1 (4+1) u2 dy	
0	
$\frac{1}{2} \int u^{\frac{3}{2}} + u^{\frac{1}{2}} du$	
1 / 2 5 . 2 3 74	
== 2 = 2 = 4 = 3 4 = 3	
$=\frac{1}{2}\left(\frac{2}{5}\times 2^5 + \frac{2}{3}\times 2^3 - \frac{1}{2}\right)$	\bigcirc
136	<u> </u>
= 15.	

2 $\frac{\pi}{4}$ 3 $\frac{\pi}{4}$ 4 $\frac{\pi}{5}$ 6 $\frac{\pi}{2} = 4 \cos \left(\frac{\pi}{4}t\right)$ 7 $\cos \left(\frac{\pi}{4}t\right) = \frac{1}{2}$ 8 $\frac{\pi}{4}t = \frac{\pi}{3}$ 9 $t = \frac{1}{3}$ 10 $\frac{\pi}{1}$ 11 $\frac{\pi}{1}$ $\frac{\pi}$	1	d) a=4 =8 At t=0, 2=4.
14 5 i) When $x=2$. 6 $2 = 4 \cos(\frac{\pi}{4}t)$ 7 $\cos(\frac{\pi}{4}t) = \frac{\pi}{2}$ 8 $\frac{\pi}{4}t = \frac{\pi}{3}$ 9 $t = \frac{4}{3}$ 10 11 ii) $\dot{x} = -4 \times \frac{\pi}{4} \sin(\frac{\pi}{4}t)$ 12 $= -\pi \sin(\frac{\pi}{4}t)$ 13 $\therefore Max \ \dot{x} = -\pi \times -1$ 14 $= \pi \cos s$ 15 16 iii) $\dot{x} = -\frac{\pi^2}{4} \cos(\frac{\pi}{4}t)$ 17 18 i. Max acceleration is $\frac{\pi^2}{4}$, occurs at 19 20 $\cos(\frac{\pi}{4}t) = -1$	2	
5 i) When $x=2$. 6 $2-4\cos(\frac{\pi}{4}t)$ 7 $\cos(\frac{\pi}{4}t)=\frac{1}{2}$ 8 $\frac{\pi}{4}t=\frac{\pi}{3}$ 9 $t=\frac{1}{3}$ 10 11 ii) $\dot{\chi}=-4\times\frac{\pi}{4}\sin(\frac{\pi}{4}t)$ 12 $=-\pi\sin(\frac{\pi}{4}t)$ 13 $\sin(\frac{\pi}{4}t)$ 14 $=\pi\cos(\frac{\pi}{4}t)$ 15 16 iii) $\dot{\chi}=-\frac{\pi^2}{4}\cos(\frac{\pi}{4}t)$ 17 18 $\sin(\frac{\pi}{4}t)$ 19 20 $\cos(\frac{\pi}{4}t)=-1$	3	:. Use 2 = 4 ws (#t)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	
7 $\cos(\frac{\pi}{4}t) = \frac{1}{2}$ 8 $\frac{\pi}{4}t = \frac{\pi}{3}$ 9 $t = \frac{4\pi}{3}$ 10 11 ii $\dot{\chi} = -4 \times \frac{\pi}{4} \sin(\frac{\pi}{4}t)$ 12 $= -\pi \sin(\frac{\pi}{4}t)$ 13 $\frac{\pi}{4} = \pi \times -1$ 14 $= \pi \times -1$ 15 16 iii $\dot{\chi} = -\frac{\pi^2}{4} \cos(\frac{\pi}{4}t)$ 17 18 $\frac{\pi}{4} = \frac{\pi^2}{4} \cos(\frac{\pi}{4}t)$ 19 20 $\cos(\frac{\pi}{4}t) = -1$	5	i) When x=2.
8 $\frac{\pi}{4}t = \frac{\pi}{3}$ 9 $t = \frac{4\pi}{3}$ 10 11 ii) $\dot{\chi} = -4 \times \frac{\pi}{4} \sin(\frac{\pi}{4}t)$ 12 $= -\pi \sin(\frac{\pi}{4}t)$ 13 i. Max $\dot{\chi} = -\pi \times -1$ 14 $= -\pi \cos(\frac{\pi}{4}t)$ 15 16 iii) $\ddot{\chi} = -\frac{\pi^{2}}{4} \cos(\frac{\pi}{4}t)$ 17 18 i. Max acceleration is $\frac{\pi^{2}}{4}$, occurs at 19 20 $\cos(\frac{\pi}{4}t) = -1$	6	
9 $t = \frac{4}{3}$ 10 $11 ii) \dot{\chi} = -4 \times \frac{1}{4} \sin(\frac{\pi}{4}t)$ 12 $= -\pi \sin(\frac{\pi}{4}t)$ 13 $\therefore Max \dot{\chi} = -\pi \times -1$ 14 $= -\pi \cos(\frac{\pi}{4}t)$ 15 $16 iii) \dot{\chi} = -\frac{\pi^{2}}{4} \cos(\frac{\pi}{4}t)$ 17 $18 i Max acceleration is \frac{\pi^{2}}{4}, occurs at$ 19 $20 \cos(\frac{\pi}{4}t) = -1$	7	$\cos(\frac{\pi}{4}t)=\frac{1}{2}$
10 11 11 12 $ = -\pi \sin(\frac{\pi}{4}t)$ 12 $ = -\pi \sin(\frac{\pi}{4}t)$ 13 $: Max \dot{x} = -\pi \times -1$ 14 $ = \pi \cos s,$ 15 16 1ii) $ \dot{x} = -\frac{\pi^{2}}{4} \cos(\frac{\pi}{4}t)$ 17 18 19 20 Cos ($\frac{\pi}{4}t$) = -1	8	·
11 ii) $\dot{\chi} = -4 \times 4 \sin(4t)$ 12 = $-\pi \sin(4t)$ 13 : $Max \dot{\chi} = -\pi \times -1$ 14 = $-\pi \cos(5t)$ 15 16 iii) $\dot{\chi} = -\frac{\pi^2}{4} \cos(4t)$ 17 18 : $Max \ acceleration is 4, occurs at$ 19 20 $\cos(4t) = -1$	9	$t=\frac{4}{3}$
12 = $-\pi \sin(\frac{\pi}{4}t)$ 13 : $Max \dot{x} = -\pi x - 1$ 14 = $\pi t \cos(\frac{\pi}{4}t)$ 15 : $Max acceleration is \frac{\pi^2}{4}$, occurs at 19 cos $(\frac{\pi}{4}t) = -1$		
13 Max $\dot{x} = -\pi \times -1$ 14 Tr cm/s, 15 16 iii) $\dot{x} = -\frac{\pi^2}{4} \cos(\frac{\pi}{4}t)$ 17 18 Max acceleration is $\frac{\pi^2}{4}$, occurs at 19 20 $\cos(\frac{\pi}{4}t) = -1$		
15 16 17 18 Max acceleration is $\frac{T^2}{4}$, occurs at 19 20 (es ($\frac{T}{4}t$) :		
15 16 17 18 - Max acceleration is $\frac{TT^2}{4}$, occurs at 19 20 (as $(\frac{T}{4}t) = -1$		
16 iii) $\ddot{\chi} = -\frac{\Pi^2}{4} \cos(\frac{\pi}{4}t)$ 17 18 : Max acceleration is $\frac{\Pi^2}{4}$, occurs at 19 20 $\cos(\frac{\pi}{4}t) = -1$		= TT cm/s,
17 18 Max acceleration is $\frac{T^2}{4}$, occurs at 19 20 Cos $(\frac{T}{4}t) = -1$		$\frac{12}{1}$
18 : Max acceleration is #, occurs at 19 20 (25 (4t) =-1		iii) x=-4 (05(4t)
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & & &$. 11.
20 (as (\frac{1}{4}t) =-1		Max acceleration is 4, occurs at
Y /		(
121	21	
$\frac{1}{4} = \frac{1}{4}$		$\frac{1}{4}$
23 t - T		t-T
24		
25		
26		

```
(3. a) \cdot P(x) = 2x^3 - 19x^2 + 112x + d
     Zeroes d=5+6i, B=5-6i, 8
      x+B+ 8= 19
   5+6; + 5-6; +8= 19
             8+10 - 19
                 8=-=
     iii) LB8= -d
       73 (5-6i)(5+6i)=+d
10
                    d= 25+36
11
12
13
  b) i) w solves 23-1=0
                  (5-1) (5,15+1)=0
15
          w-non real, so it solves 22+2+1=0
16
                                   : w2 +w +1=0
17
18
    ii) From i)
19
          1+w2=-w - (1)
20
21
   (1) \times (2): (1+u^2)(1+u-u^2)^7 = -u \times (-2u^2)^7
                                    =-w x-128w14
23
                                    = 128 w5x3
24
25
26
```

```
1
 c) =7: If x is divisible by 4, x=4M, MEZ
     -- 100 a + 10 b+ c = 4M
              106+c = 4M-100a
                     = 4(M-2S)
                     =4L, LEZ.
   -- 106+C is divisible by 4, with 106+c as
          last two digits
  =: If the last two digits are divisible
        4, 106+c= 4k, 0k=2.
13
            x= 100 a+ 106+c
             =100a+4k
15
             = 4(25a+k)
16
             = 4m, mE 2.
17
18
   - ? is divisible by 4.
20
         is divisible by 42=> The lost
21
                               digits are divisible
by 4.
22
23
24
25
26
```

	1
$\frac{1}{2}$	= 6
· ·	= 6
3	
4 3×6 × ω εθ = 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6	
7	
8 9 180	
9	
10	
11	
12	
13 Sin 20 = 2 sin Ocos0	
13 : $5i_{1}20 = 25i_{1}0\cos\theta$ 14 = $2 \times \frac{180}{9} \times \frac{1}{9}$	
15 855	
16 - 81	
17	
18	
19	
20	
21	
22	
23 .	
24	
25	
26	

$\begin{bmatrix} 2 & e \end{bmatrix} \text{ If } \begin{bmatrix} 0 \\ 3 \\ -5 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$
3 [2]-[3] [-1]
4
5
$\begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} -\lambda \\ 2\mu - 1 \\ -\mu + 8 \end{bmatrix}$
7
$8 : -\lambda = -\mu - 1 - (1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$10 2\lambda = -13$
11
$12 (1) + (2) : 0 = \mu - 2 - (3)$
13
$(3) \rightarrow (2) \qquad 2 \times 2 - 1 = \lambda$
$\lambda = 3$
16
17 Test in (3) 18 LHS=6 RNS=-2+8
18 LHS=6 RMS=-218
19 – 6
20
21 - Point at >=3: [3]
$\begin{bmatrix} -2 \\ -5 \end{bmatrix}$
23
24
25
26 - Point (-3, 6, 1)

```
14
        x= sin3t + con3t +2
        2=3cos3t -35=3t
        2 = -95:3t -9 ws3t
          - - 9 (sin 3t +2-2)
            -9(x-2)
     10
        If a+bx is rational, x is rational
12
        If a+bit is rational!
13
          a+bx= q p,q & Z, q 70.
15
16
17
18
19
20
             x 3 rational.
21
22
     By contrapositive, if X is irrational,
23
24
25
26
```

1
2 iii) for contradiction, assume Is is rational.
0
4 i.e. $J3 = q$ $P, q \in \mathbb{Z}, q \neq 0,$ 5 $H(F(p,q) = 1.$
$H(F(\varphi,q)=1$
ρ^2
$\frac{7}{3} = \frac{3}{9}^2$
8 p ² = 13g ²
9 is divisible by 3
8 $p^{2} = 93g^{2}$ 9 $p^{3} = 10$ 10 $p^{3} = 3k, he^{2}$ 11 $p^{2} = 3k, he^{2}$
11 i.e. p=3k, heZ.
12
$(3h)^{2} = 39^{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15 As above, q is divisible by 3.
16
17 This controdicts MCF (p,g)=1.
18
19 - V3 3 irrational.
20
21 By 11) 5-175 3 irrational
22
23
24
25
26

1	1 (((()))	1 3
2	e) i) $\int_{\partial} f(x) dx$	Let u=a-x x=a-4
3		du=-dz
4	00	$\chi=0 \rightarrow \mu=a$
5	= Sof(a-u)-du	a=a > u=O.
6		
7	(a	
8	= So f(q-n) dn	
9		
10	= 50 f(a-x) dx	
11		
12	ii) $\int_{0}^{1} \chi(1-\chi)^{so} d\chi$	
13		
14	- 5 (1-21) 250	by ;)
15	e l	σ
16	= \(\sigma \chi^{50} - \chi^{31} \)	
17	- χ ⁵¹ χ ⁵²)	
18	= 52 50	
19	1	
20	= 51 - 52	
21	1	
22	= 2652	
23		
24		
25		
26		

1 \ \(\begin{aligned} \begin{aligned} \frac{1}{2} & \ldots \end{aligned} \frac{1}{2} & \ldots \frac{1}{2} & \ldots \end{aligned} \frac{1}{2} & \ldots \end{aligned} \frac{1}{2} & \ldots \end{aligned} \frac{1}{2} & \ldots \end	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4 5 At $x=0$, $t=0$, $v=\frac{1}{2}$. 6 7 $\frac{1}{2} \times (\frac{1}{2})^2 = \frac{1}{8} e^{0} + c$, 8 $c=0$ 9 10 $\frac{1}{2}v^2 = \frac{1}{8} e^{-42}$ 11 12 $v=\frac{1}{2} e^{-2x}$ as $v70$ in helly. 15 16 17 $\frac{1}{2}$ 1	5 At $x=0$, $t=0$, $v=\frac{1}{2}$.
4 5 At $x=0$, $t=0$, $v=\frac{1}{2}$. 6 7 $\frac{1}{2} \times (\frac{1}{2})^2 = \frac{1}{8} e^{0} + c$, 8 $c=0$ 9 10 $\frac{1}{2}v^2 = \frac{1}{4} e^{4x}$ 11 12 $v=\frac{1}{2} e^{-2x}$ as $v70$ in helly. 15 16 17 $\frac{1}{2} \frac{1}{2} = \frac{1}{2} e^{2x}$ 18 $\frac{1}{2} = \frac{1}{2} e^{2x}$ 19 20 $t=e^{2x} + c$, 21 At $t=0$, $x=0$ 22 $0=e^{0} + c$, 23 $c_2=-1$ 24 25 $c_2=-1$	5 At $x=0$, $t=0$, $v=\frac{1}{2}$.
4 5 At $x=0$, $t=0$, $v=\frac{1}{2}$. 6 7 $\frac{1}{2} \times (\frac{1}{2})^2 = \frac{1}{8} e^{0} + c$, 8 $c=0$ 9 10 $\frac{1}{2}v^2 = \frac{1}{8} e^{-42}$ 11 12 $v=\frac{1}{2} e^{-2x}$ as $v70$ in helly. 15 16 17 $\frac{1}{2}$ 1	5 At $x=0$, $t=0$, $v=\frac{1}{2}$.
6 7 7 12 12 10 10 12 12 11 12 12 13 14 14 15 15 16 11 17 18 19 20 19 20 19 20 19 20 19 20 21 21 21 21 21 21 21 22 22 23 22 23 22 24 25 26 27 28 28 20 20 20 21 22 22 23 22 24 25 26 27 28 28 28 29 20 20 20 21 21 22 22 23 22 24 25 26 27 28 28 29 20 20 20 21 22 22 23 22 24 25 26 27 28 28 29 20 20 20 21 21 22 22 23 22 23 22 24 25 26 27 28 28 29 20 20 20 20 21 21 22 22 23 22 23 22 24 25 26 27 28 28 29 20 20 20 20 20 20 21 21 22 22 23 22 23 22 24 25 26 27 28 28 28 29 20 20 20 20 21 21 22 22 23 22 23 22 24 25 26 27 28 28 28 29 20 20 20 20 20 21 21 22 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	
6 7 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10 $\frac{1}{2}v^{2} = \frac{1}{8}e^{-4\lambda}$ 11 12 $v^{2} = \frac{1}{4}e^{-4\lambda}$ 13 14 $v = \frac{1}{2}e^{-2\lambda}$ as $v70$ in helly. 15 16 ii) $\frac{d\lambda}{dt} = \frac{1}{2}e^{2\lambda}$ 18 $\frac{dt}{dt} = 2e^{2\lambda}$ 19 20 $t = e^{2\lambda} + i$ 21 At $t = 0$, $\chi = 0$ 22 $0 = e^{0} + i$ 23 $c_{2} = -1$ 24 25 $c_{2} = e^{2\lambda} - 1$	6
10 $\frac{1}{2}v^{2} = \frac{1}{8}e^{-4\lambda}$ 11 12 $v^{2} = \frac{1}{4}e^{-4\lambda}$ 13 14 $v = \frac{1}{2}e^{-2\lambda}$ as $v70$ in helly. 15 16 ii) $\frac{d\lambda}{dt} = \frac{1}{2}e^{2\lambda}$ 18 $\frac{dt}{dt} = 2e^{2\lambda}$ 19 20 $t = e^{2\lambda} + i$ 21 At $t = 0$, $\chi = 0$ 22 $0 = e^{0} + i$ 23 $c_{2} = -1$ 24 25 $c_{2} = e^{2\lambda} - 1$	$\frac{7}{2} \times \left(\frac{1}{2}\right)^2 = \frac{1}{8} e^{\circ} + c,$
10 $\frac{1}{2}v^{2} = \frac{1}{8}e^{-4\lambda}$ 11 12 $v^{2} = \frac{1}{4}e^{-4\lambda}$ 13 14 $v = \frac{1}{2}e^{-2\lambda}$ as $v70$ in helly. 15 16 ii) $\frac{d\lambda}{dt} = \frac{1}{2}e^{2\lambda}$ 18 $\frac{dt}{dt} = 2e^{2\lambda}$ 19 20 $t = e^{2\lambda} + i$ 21 At $t = 0$, $\chi = 0$ 22 $0 = e^{0} + i$ 23 $c_{2} = -1$ 24 25 $c_{2} = e^{2\lambda} - 1$	8
11 12 $v^{2} = \frac{1}{4}e^{-4x}$ 13 14 $v = \frac{1}{2}e^{-2x}$ as $v \neq 0$ in tally. 15 16 17 $v = \frac{1}{2}e^{-2x}$ 18 $v = \frac{1}{2}e^{-2x}$ 19 20 $v = e^{2x} + c_{1}$ 21 At $v = e^{2x} + c_{2}$ 22 $v = e^{2x} + c_{3}$ 23 $v = e^{2x} + c_{4}$ 24 25 $v = e^{2x} - 1$	9
12 $v^{2} = \frac{1}{4}e^{-4x}$ 13 14 $v = \frac{1}{2}e^{-2x}$ as $v \neq 0$ in helly. 15 16 17 $dt = \frac{1}{2}e^{2x}$ 18 $dt = 2e^{2x}$ 19 20 $t = e^{2x} + c_{1}$ 21 At $t = 0$ $x = 0$ 22 $0 = e^{0} + c_{2}$ 23 $c_{2} = -1$ 24 25 $c_{1} = e^{2x} - 1$	$\frac{1}{2}V^2 = \frac{1}{8}e^{-42}$
13 14 $V = \frac{1}{2}e^{-2\lambda}$ as $v70$ in helly. 15 16 17 $v = \frac{1}{2}e^{-2\lambda}$ as $v70$ in helly. 17 $v = \frac{1}{2}e^{-2\lambda}$ 18 $v = \frac{1}{2}e^{-2\lambda}$ 19 20 $v = e^{2\lambda} + v_1$ 21 At $v = \frac{1}{2}e^{-2\lambda}$ 22 $v = e^{2\lambda} + v_1$ 23 $v = \frac{1}{2}e^{-2\lambda}$ 24 25 $v = \frac{1}{2}e^{-2\lambda}$ as $v = \frac{1}{2}e^{-2\lambda}$ as $v = \frac{1}{2}e^{-2\lambda}$.	11
14 $V = \frac{1}{2}e^{-2\lambda}$ as $\sqrt{70}$ in tally. 15 16 ii) $d\lambda$ 17 $d\lambda = 2e^{2\lambda}$ 18 $d\lambda = 2e^{2\lambda}$ 19 20 $t = e^{2\lambda} + c_1$ 21 $At = c_0$ 22 $c_0 = e^{2\lambda} + c_0$ 23 $c_0 = c_0$ 24 25 $c_0 = c_0$	$v^2 = \frac{1}{4}e^{-4x}$
15 16 ii) $d\lambda$ 17 $dt = 2e^{2x}$ 18 $dt = 2e^{2x}$ 19 20 $t = e^{2x} + c_1$ 21 $At = c_1$ 22 $c_2 = c_1$ 23 $c_2 = c_1$ 24 25 $t = e^{2x} - 1$	
15 16 ii) $d\lambda$ 17 $dt = 2e^{2x}$ 18 $dt = 2e^{2x}$ 19 20 $t = e^{2x} + c_1$ 21 $At = c_1$ 22 $c_2 = c_1$ 23 $c_2 = c_1$ 24 25 $t = e^{2x} - 1$	$V = \frac{1}{2} e^{-2\chi} \text{as } V70 \text{initially}.$
17 $dt = 2e^{2x}$ 18 $dt - 2e^{2x}$ 19 $t = e^{2x} + c_1$ 21 $At = t = 0, x = 0$ 22 $0 = e^{0} + c_2$ 23 $c_2 = -1$ 24 25 $t = e^{2x} - 1$	15
19 20 $t = e^{2\lambda} + i_{2}$ 21 At $t = 0$, $\chi = 0$ 22 $0 = e^{0} + i_{2}$ 23 $c_{2} = -1$ 24 25 $t = e^{2\lambda} - 1$	16 ii) dr
19 20 $t = e^{2\lambda} + i_{2}$ 21 At $t = 0$, $\chi = 0$ 22 $0 = e^{0} + i_{2}$ 23 $c_{2} = -1$ 24 25 $t = e^{2\lambda} - 1$	$dt = 2e^{2x}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{dt}{dt} = 2e^{2\pi t}$
25 $t = e^{2\chi - 1}$	
25 $t = e^{2\chi - 1}$	$t = e^{i\lambda} + i_{1}$
25 $t = e^{2\chi - 1}$	At $t=0$, $\chi=0$
25 $t = e^{2\chi - 1}$	$0 = e^{0} + (2$
25 $t = e^{2\chi - 1}$	23 .C21
	24
26	$t = e^{2\chi} - 1$
	26

1	
2 e2= +1	
$3 \qquad 2x = \ln(t+1)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5	
6 iii) As t > 0	
6 iii) As t > 0 7 x= ln(t+1)	
8 -> 00	
$v = \frac{1}{2}e^{-21}$	
8 $ \rightarrow \infty$ 9 $ \stackrel{\cdot}{\cdot} = \frac{1}{2}e^{-21}$ 10 $ \rightarrow \frac{1}{2} \times 0 = 0$	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 .	
24	
25	
26	

1 e);) BE 1 AC
2
$\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}$
$\frac{1}{b} = \frac{1}{a-c}$
5
6b.(a-c)=0 - (1)
7
8 Similarly CF_LAB
8 Similarly (F_1 AB 9
10 (6-9)
11
12 C.(b-a)-0 - (2)
13
14 ii) From (1) 5, (-a,b=0
15 b. C = a. b
16
17 From (2) (.5-a.c.0
18 b. i. a. (
19
$a \cdot b = a \cdot c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22 0 (6 - 0) - 0
23 AO L BC
Ab I DC
25
26 iii) Attitudes of a triangle are conjuncit.

16

	(0 .
1	
2	i) LMS=(1+i ton0)"+(1-i+an0)"
3	/ ising) " / ising) "
4	= (1+ cos0) + (1- cos0)
5	(cos0+isin0) (cos0-isin0)
6	$=$ $(\cos \theta)^{+}$ $(\cos \theta)^{-}$
7	(cos 0 + isin 0) + (cos(-0) + isin(-0))
8	= cos "O
9	cosno + iskno + cos(-n0) + isintino)
10	= cos 0
11	2 cos (n 0)
12	= cost O
13	
14	ii) If (1+2)4+(1-2) =0
15	Let = itano, by i):
16	
17	2 cos 40
18	cos40 -0
19	cos40-0
20	$\frac{2\cos 40}{\cos 40-0}$ $\cos 40-0$ $40=\frac{11}{2},\frac{3\pi}{2},\frac{\pi}{2},\frac{3\pi}{2}$ Weed 4 solutions.
21	4 solutions.
22	0= + 78, +317
23	
24	: 2= + itan \$ + itan \$.
25	
26	

1	
2	b) i) a=6, b=10, c=15.
3	
4	ii) Test n=2.
5	2(2-1)
6	$\chi = \frac{2(2-1)}{2}$
7	I, as on the table.
8	
9	. Statement true for not.
10	k(k-1)
11	Assume true for nok, :-e. Xn= 2.
12	(R+1) R
13	Hence show free For niktl, RTD Xx+ = 2
14	Now, the (k+1)th line will maximally intersect
15	R lines:
16	Intersects with
17	every available line.
18	
19	
20	
21	
22	$X_{k} = X_{k} + R = \frac{R(R-1)}{2} + R \qquad b_{2} assumption$
23	$\frac{R^2-R+2h}{}$
24	(k+1)h
25	= 2 ,
26	as required.

r
1
2. If the statement is true for n= k it
3 is true for nikel. As it is true for
4 n=1, it is true for n=1+1=2,3,
5 Here by mathematical induction, it is true
6 For dall positive integers.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 .
24
25
26